An Overview of Key Features of WATER WAY INFRASTRUCTURE
EUROPEAN UNION NAVIGABLE WATERWAYS

Open-river navigation
(Natural channels)
Canalized river
Canals
Together with rail and short sea shipping, inland waterway transport can essentially contribute to alleviate Europe’s congested road networks.
RIVER USES AND MEASURES TO ACHIEVE THEM

1. Measure to achieve the required use
2. Measure of secondary importance for the use
3. Measure which might be necessary as result of the operation

<table>
<thead>
<tr>
<th>Measure</th>
<th>Bed regulation</th>
<th>Discharge and water level regulation</th>
<th>Quality control</th>
</tr>
</thead>
<tbody>
<tr>
<td>repeated dredging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>temporary construction in river bed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fixation of bottom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>elimination of obstacles from low-water bed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>channel rectification and fixation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>channel constriction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>revetments and groynes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectification in the flood plains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reservoirs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weirs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quality control works</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use of river</th>
<th>Flood control</th>
<th>Navigation</th>
<th>Hydropower</th>
<th>Irrigation and water supply</th>
<th>Waste discharge</th>
<th>Bank protection</th>
<th>Cooling water</th>
<th>Commercial sand dredging</th>
<th>River crossings</th>
<th>Control of sea water intrusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood control</td>
<td>1 1 2 1 1 1 3 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td></td>
<td>1 1 1 1 1 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropower</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrigation and water supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bank protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>Commercial sand dredging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>River crossings</td>
<td></td>
</tr>
<tr>
<td>Control of sea water intrusions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
From Nakato and Ettema (1996)
Use of dikes and revetments on the Mississippi River [1]
Natural processes of river systems like meandering, braiding and the occurrence of avulsions are still only partially understood. Erosion and sedimentation processes at the smaller scales can have large-scale implications that can even determine the course of a river. Bar formation in alluvial channels, bank erosion and accretion as well as interactions between flow and natural vegetation or man-made interventions all play an important role in river morphodynamics.

Sequence of pools and riffles in straight and sinuous streams.

Types of channel planforms (after Richardson et al., 1990).
Types of sediment loads in a river channel [2]

Typical changes in the stream channel characteristics along its length [2]
Channel Sediment Transport and Deposition
Energy is required to erode and transport sediment. The heavier the sediment particles, the more energy required to erode and transport them.

Relation between flow rate and sediment particle size erosion and transport
Vessel traffic can suspend sediment from the bed and banks of a waterway through:
Flow under and around the vessel as water moves from the bow of the vessel to the stern
Pressure fluctuations beneath the vessel
Propwash striking the bed
Bow and stern waves agitating the bed and breaking against the bank

Surface sediment plume from vessel passage [1]
River sediment problems associated with navigation can be grouped into two main categories; local scour and deposition, and general degradation (overall erosion) or aggradation (deposition) problems.
Open-river navigation implies the use of natural streams for navigation without locks and dams. The development of open-river navigation usually involves lower first cost but maintenance cost could be high because of the complex nature of these streams, tendency to meander and migrate, need of continuous dredging, and difficulty of designing the training and stabilization structures needed.

The improvement of natural streams for navigation involves channel realignment, stabilization, training structures, and in many cases the modification or replacement of existing bridges.
There are two types of waterway training structures:
1. re-directive
2. resistive.

Re-directive, as the name implies, is the use of the river’s energy and managing the energy in a way that benefits the system i.e., enhance the navigation channel.

A resistive structure acts to maintain the system as status quo i.e., reducing bank erosion.
Certain types of control works are essential in the very early phases of development of a navigation channel, while others are used primarily in the final refinement phases of the project.
Dike Bank Paving On The Upper Mississippi River
Dikes placed in the form of a series of vanes have proved effective as a means of controlling channel development and sediment movement under certain conditions.

L-head dike on the Mississippi River [1]

Vane dikes between L-head dikes on Mississippi River near Providence, LA [1]
RESISTIVE STRUCTURES

Resistive structures are primarily used to prevent bank erosion and channel migration on the outside of a river bend and to establish or maintain a desired channel alignment. Revetments are usually rock, Articulated Concrete Mats (ACM) or concrete mattress.
CHANNEL ALIGNMENT AND CONTRACTION

The layout of river training structures normally depends on the limits of contraction required to maintain a self-scouring channel of adequate width and depth through the full range of flows to permit continuous navigation.
Even with locks and dams, some channel improvements as training river structures for stream stabilization and channel maintenance will be required.

Hog Lake additional contraction structures [1]
Man-made channel realignments are the result of excavating a channel across the neck of a bendway. The primary purposes of these realignments include:

1. Eliminate bends too tight to be safely navigated by commercial tows
2. Reduce flood stages by creating a more efficient channel
3. Provide indirect bank stabilization by realigning the river away from eroding banks
CHANNEL REALIGNMENTS (CUTOFFS)

Kateland Cutoff Fifteen Years After Construction
Canalization becomes necessary from the navigation point of view if the free-flowing river has too shallow depth or too high velocity to permit navigation.
Advantages
the opportunity to develop multipurpose utilization of water resources; sufficient depth for navigation through the year, even during low river flows period; reduced flow velocities; increased width of waterways; safer and cheaper navigation; often a reduced need for bank protection and its maintenance (compared with regulated rivers).
Desadvantages
high capital cost;
the lockage costs;
the delay of traffic passing trough locks;
the need for protection of adjacent land;
drainage problems;
the possible deposition of sediments at the upstream end;
possible winter regime complications
WEIRS, BARRAGES AND STORM SURGE BARRIERS

They are meeting points for transportation infrastructure, not only by water but also road or rail. They have to be located in the right places, with sophisticated designs and careful operation.

determining the location on the river, canal or channel
sediment transport & morphological development
boundary conditions
lay-out, orientation
principle design of sill, stilling basins
gates and valves
bed and bank protection
intakes
settling traps
operational aspects
The PIANC InCom-WG26 (Working Group) performed a comprehensive review of the modern technologies, design tools, and recent researches used to design and build structures controlling water level and flow in rivers, waterways, and ports (for navigation and flood protection).

MOVABLES WEIRS, STORM SURGE BARRIER

Thames River barrier (UK)

Maeslant Storm Surge Barrier (The Netherlands)
MOVABLES WEIRS, STORM SURGE BARRIER

Eastern Scheldt Storm Surge Barrier
Canals, entirely artificial waterways whose water is obtained by diversion from rivers, by pumping or from reservoirs.
The diagnosis of available resources for the canals is based on the quantitative estimation of natural water supplies, the means of interception in the water cycle and its high storage and shipment to the channel.
Canal Seine-Nord Europe
The entire Seine-Scheldt project consists of different sections in Belgium and northern France which, once linked together, will link Paris and Île-de-France to the north-western European waterway network.

Seine-Scheldt – the only large-scale European transport project enhancing sustainable development, improving accessibility of regions and raising economic efficiency is supported at local, national and European level.

3 major benefits

1. Linking large economic centres of north-western and central Europe will provide a solution for logistics players

2. A solution for the traffic gridlock on the north-south road corridor

3. An example of sustainable development

IN FRANCE, the launch for a new 105 km canal Seine-Nord linking the Dunkirk-Scheldt canal to the Oise river (close to Janville) has been officially decided by the French government on 18 December 2003.

At the north and south end of the new canal, the rivers Seine and Oise and the Dunkirk-Scheldt canal are currently being upgraded to make the navigation infrastructure more reliable and to facilitate, in the long term, the passage of larger vessels, for instance by raising bridges.

IN THE WALLOON REGION, investments have already been carried out on the canal du Centre, in particular the boat-lift of Strepy-Thieu.

IN THE FLEMISH REGION, expanding the Lys and the maritime Scheldt will allow larger vessels to connect to the Rhine via the Scheldt-Rhine canal.
Canal Seine-Nord Europe

Le bassin réservoir de la vallée Louette
4 multimodal platforms, 7 loading/unloading quays serving transhipment with other transport modes (road and rail)
Classification of Inland Waterway

<table>
<thead>
<tr>
<th>Type of Inland Waterways</th>
<th>Classes of Navigable Waterways</th>
<th>Motor Vessels and Barges</th>
<th>Pushed Convoys</th>
<th>Minimum Height Under Bridges</th>
<th>Graphical Symbols on Maps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type of Vessel: General Characteristics</td>
<td>Type of Convoy: General Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Designation</td>
<td>Maximum Length</td>
<td>Maximum Beam</td>
<td>Draught (m)</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>Barge</td>
<td>38.5</td>
<td>5.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>Kempine - Barge</td>
<td>50.55</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III</td>
<td>Gustav Koenig</td>
<td>67-80</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>Gross Finow</td>
<td>41</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>BM-500</td>
<td>57</td>
<td>7.5-5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III</td>
<td></td>
<td>67-70</td>
<td>8.2-5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV</td>
<td>Johann Walker</td>
<td>80-85</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Va</td>
<td>Large Rhine Vessels</td>
<td>55-110</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vlb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vlc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VII</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1
Classification of Inland Waterway

<table>
<thead>
<tr>
<th>Class</th>
<th>Type of motorized vessel</th>
<th>Tonnage (ton)</th>
<th>Formation push convoy</th>
<th>Tonnage (ton)</th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Draught (m)</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Leisure</td>
<td>< 250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I</td>
<td>Spits</td>
<td>250 - 400</td>
<td>38.5</td>
<td>5.05</td>
<td>1.8</td>
<td>2.2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Campine vessel</td>
<td>400</td>
<td>50</td>
<td>6.6</td>
<td>2.5</td>
<td>4.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Dortmund-Eems canal vessel</td>
<td>650 - 1,000</td>
<td>1,250 - 1,450</td>
<td>67 - 80</td>
<td>8.2</td>
<td>2.5</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>IV</td>
<td>Rhine Herne canal vessel</td>
<td>1,000 - 1,500</td>
<td>1,600 - 3,000</td>
<td>80 - 85</td>
<td>9.5</td>
<td>2.5</td>
<td>5.25 / 7</td>
<td></td>
</tr>
<tr>
<td>Va</td>
<td>Large Rhine vessel</td>
<td>1,500 - 3,000</td>
<td>3,200 - 6,000</td>
<td>95 - 110</td>
<td>11.4</td>
<td>2.5</td>
<td>5.25 / 7</td>
<td></td>
</tr>
<tr>
<td>Vb</td>
<td>Push convoy (2 barges)</td>
<td>-</td>
<td>3,200 - 6,000</td>
<td>172 - 185</td>
<td>11.4</td>
<td>2.5</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Vla</td>
<td>Push convoy (2 barges)</td>
<td>-</td>
<td>3,200 - 6,000</td>
<td>95 - 110</td>
<td>22.8</td>
<td>2.5</td>
<td>7.1</td>
<td>9.1</td>
</tr>
<tr>
<td>Vlb</td>
<td>Push convoy (4 barges)</td>
<td>-</td>
<td>6,400 - 12,000</td>
<td>185 - 195</td>
<td>22.8</td>
<td>2.5</td>
<td>7.1</td>
<td>9.1</td>
</tr>
<tr>
<td>Vlc</td>
<td>Push convoy (6 barges)</td>
<td>-</td>
<td>9,600 - 18,000</td>
<td>270 - 280</td>
<td>22.8</td>
<td>2.5</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Vlc</td>
<td>Push convoy (6 barges)</td>
<td>-</td>
<td>9,600 - 18,000</td>
<td>193 - 200</td>
<td>33</td>
<td>2.5</td>
<td>9.1</td>
<td></td>
</tr>
</tbody>
</table>

*Standard dimensions
Push barge: 76.5 m x 11.40 m
Shipping locks allow vessels to move freely while keeping water use to a minimum. Vessels and their owners want to move along as quickly and as safely as possible.

selecting the location
the lay-out
boundary conditions
forces on vessels and gates
hydraulic design of filling and emptying system
saltwater/freshwater separation systems
water management systems
hydraulic design of gates and valves
bed and bank protection
operational management
The following main design objectives and optimization goals are governing the design of a lock:

Reliability of the system, structures and the operations,
Reduced duration of a lock navigation cycle times,
Reduced water motions inducing ship displacement and mooring forces
Avoid water resource problems (minimise water use)
Saltwater intrusion
Reduced life cycle cost
Minimizing energy use
Avoid negative environmental impact
Minimize impacts to navigation traffic and surrounding community
Safety and Security
Validation of the choices for the dimensions

Capacity vs. forecast

(a) Simulation of the traffic on the waterway
(b) Risk analysis & costs estimate

Simulation Scenarios

Indicators:
- NPV
- Cost/Benefit

LOCKS – Design – Introduction
2) Choice of the *type of the lock*, characterized by:

A. Hydraulic system

B. Type of structure (lock floor, lock walls, etc.)

C. Construction method (dry works, prefabrication, etc.)
LOCKS – Design – Introduction

WATER RESOURCES
Water Saving Basins
APPROACH WALLS & ACCESS CHANNEL

LOCKS – Design – Introduction
IRON GATES II (Romania)
The problems raised in this section are:
How to minimize impacts to navigation traffic and the surrounding community during construction?
Which are the best construction modes to reduce the impact during construction?
New innovative construction methods including prefabrication techniques like float-in, in-the-wet construction (lift-in precast concrete components, etc.)...
A very unique construction method. The lock chamber is constructed on the ground surface. When complete the soil is removed beneath the lock chamber and it is lowered into its final position.
A new lock chamber built to replace a small existing lock. The lock chamber is built on the ground surface and the ground beneath is then removed to lower the chamber to its final elevation.
The ‘Naviduct’ is a combination of a double navigation lock that includes an underpass for road traffic.
Locks are also strategic infrastructures for port development. In low-lying countries, such as the Netherlands and Belgium, locks are structures in dikes and have an important function in flood defence.
MARITIME LOCKS

LOCKS COMPLEX – ANTWERP (68m x 500m)
CROSSING STRUCTURES
LONGITUDINAL INCLINED PLANE

Ronquière (Belgium)
CROSSING STRUCTURES
TRANSVERSE INCLINED PLANE

Inclined plane on Marne-Rhine Canal
Hydraulic lift in Strépy-Thieu (Belgium)
Hydraulic lift

CROSSING STRUCTURES
HYDRAULIC LIFTS

Peterborough lift lock

Rothensee boat lift
CROSSING STRUCTURES
FALKIRK WHEEL (Scotland)
CROSSING STRUCTURES
FALKIRK WHEEL (Scotland)
Two issues are vital in looking at aging infrastructure: what is the present condition and how urgent is it to expend significant public funds to achieve its repair, replacement, and management improvement; what are the priorities across the range of infrastructure types.
Development of a river system for navigation may involve the construction of several major components such as locks and dams, bank stabilization, river training structures, reservoirs, and channel realignments. The impacts of each of these components of work can be assessed individually.

Because of this complexity it is difficult to develop definite rules or trends that apply to all navigation projects or all rivers. Design criteria and techniques that have been successful on one river system may not be feasible on another system which has different hydrologic, sediment, or geomorphic characteristics.